5. 证据的评价与分级:基于评估、制订及评价分级(grades of recommendation,assessment,development and evaluation,GRADE)系统对证据质量及推荐强度进行分级。证据质量包括高(A)、中(B)、低(C)、极低(D)4个等级;推荐强度主要考虑证据质量、预防效果,分为强推荐、弱推荐(表1、2)。
(三)美国麻醉医师协会全身状况(American Society of Anesthesiologists physical status,ASA-PS)分级
麻醉医师习惯使用ASA-PS分级作为患儿的麻醉风险指标,但是ASA-PS分级并没有考虑年龄、手术等危险因素。在儿科麻醉实践中,两名麻醉医师对同一患儿可能给出不一致的ASA-PS分级,评估者间的可信度仅为中等水平,可见ASA-PS分级用于儿童麻醉评估缺乏可靠性和精准性[11]。理想的ASA-PS分级评估还应包括年龄、先天性异常或功能限制所导致的器官功能障碍等方面。波士顿儿童医院结合患儿的急慢性病症、先天性畸形及各种综合征制订了儿科ASA-PS评估标准[12](表3),经多中心研究验证,此标准优于先前的ASA-PS分级[13],Ⅰ、Ⅳ级患儿评估的可靠性高于Ⅱ、Ⅲ级,仍需进一步细化完善儿科ASA-PS Ⅱ级和Ⅲ级的评估标准。
(五)危重症患儿识别与评估
拟行大器官移植、先天性心脏病、恶性肿瘤等大型手术的患儿容易在围手术期进展为多脏器功能衰竭,应综合评估多器官功能,以期早识别、早干预。左心室射血分数(ventricular ejection fraction,EF)可反映左心室收缩能力,正常范围在50%~70%,低于50%可考虑心功能不全。低氧血症及肺动脉高压等临床症状常常是肺功能不全的表现。患儿(特别是急诊手术患儿)病情危重程度的早期识别至关重要,通常将意识反应、呼吸、循环作为主要评判指标。儿童早期预警评分(pediatric early warning score,PEWS)可动态评估患儿的病情轻重程度(表5),≥4分或任1项得分3分,提示病情恶化,应立即评估是否需要紧急给予呼吸循环支持,以及是否需转入儿童重症监护病房(pediatric intensive care unit,PICU)[21]。
4. 围手术期呼吸不良事件:前瞻性多中心队列研究表明0~15岁儿童围手术期呼吸不良事件发生率为3.1%,约占围手术期不良事件的60%[1]。围手术期呼吸不良事件主要包括喉痉挛、支气管痉挛、呼吸不足或呼吸暂停、屏气、低氧血症(SpO2<95%)、吸氧时间延长、严重咳嗽、呼吸道梗阻、误吸及重新插管[35]。围手术期呼吸不良事件的常见危险因素包括:年龄、上呼吸道感染、被动吸烟史、湿疹、肥胖、鼻塞、咳嗽、流鼻涕、过敏、麻醉方法、ASA状态、既往肺部疾病及使用人工气道装置(面罩、喉罩或气管内导管)等。COLDS评分是预测围手术期呼吸不良事件发生的定量指标(表6)[36],包括5个部分:目前症状体征(current signs and symptoms,C)、发病时间(onset of symptoms,O)、肺部疾病(lung disease,L)、即将使用的人工气道装置(device to be used for airway management,D)、手术类型(surgery type,S)。每部分的评分由1、2、5三个分值组成,分值越大意味着风险越高,单一部分评分达到5分也是围手术期呼吸不良事件的警示信号。COLDS评分≥19分时,患儿发生围手术期呼吸不良事件的风险显著增加,应考虑推迟择期手术。COLDS评分用于术前评估可量化围手术期呼吸不良事件风险,识别高风险患儿并辅助临床决策,有助于麻醉医师和家属在风险权衡时做出更明智的选择[37, 38]。国内研究亦发现:年龄、体重异常(超过或低于正常体重20%)、麻醉时间、手术季节(春季至夏季、秋季至冬季)、ASA分级(Ⅱ级和Ⅲ级)、疼痛评分(Ⅲ级)均为全身麻醉患儿围手术期呼吸不良事件的独立危险因素,并据此建立了围手术期呼吸不良事件风险预测模型[39]。沙丁胺醇已被证实可减少扁桃体切除术和近期URTI患儿的喉痉挛、咳嗽、低氧血症等围手术期呼吸不良事件的发生率[40]。荟萃分析显示右美托咪啶可降低围手术期呼吸不良事件的发生率[41],局部喷雾或静脉注射1~2 mg/kg利多卡因可以降低全身麻醉喉痉挛的发生率[42]。随机对照试验发现使用喉罩比气管内导管的围手术期呼吸不良事件(喉痉挛和支气管痉挛)发生率显著降低[43],同时荟萃分析亦证实喉罩在减少上呼吸道感染患儿咳嗽方面优于气管内导管[44];与气管导管相比,喉罩可显著降低围手术期呼吸不良事件的发生率[45]。
利益冲突所有作者声明不存在利益冲突 参考文献(下滑查看):
[1]HabreW, DismaN, ViragK, et al. Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe[J]. Lancet Respir Med, 2017, 5(5):412-425. DOI: 10.1016/S2213-2600(17)30116-9.
[2]中国心胸血管麻醉学会日间手术麻醉分会, 中华医学会麻醉分会小儿麻醉学组. 儿童加速康复外科麻醉中国专家共识[J]. 中华医学杂志, 2021, 101(31):2425-2432. DOI: 10.3760/cma.j.cn112137-20201108-03034.
[3]RossaintJ, ZarbockA. Perioperative inflammation and its modulation by anesthetics[J]. Anesth Analg, 2018, 126(3):1058-1067. DOI: 10.1213/ANE.0000000000002484.
[4]BertolizioG, AstutoM, IngelmoP. The implications of immunization in the daily practice of pediatric anesthesia[J]. Curr Opin Anaesthesiol, 2017, 30(3):368-375. DOI: 10.1097/ACO.0000000000000462.
[5]LinC, Vazquez-ColonC, Geng-RamosG, et al. Implications of anesthesia and vaccination[J]. Paediatr Anaesth, 2021, 31(5):531-538. DOI: 10.1111/pan.14148.
[6]Merritt-GenoreH, MoosdorfR, GillaspieE, et al. Perioperative coronavirus vaccination-timing and implications: a guidance document[J]. Ann Thorac Surg, 2021, 112(5):1707-1715. DOI: 10.1016/j.athoracsur.2021.07.016.
[7]HohnA, TrieschmannU, FranklinJ, et al. Incidence of peri-operative paediatric cardiac arrest and the influence of a specialised paediatric anaesthesia team: retrospective cohort study[J]. Eur J Anaesthesiol, 2019, 36(1):55-63. DOI: 10.1097/EJA.0000000000000863.
[8]HofstetterAO, LegnevallL, HerleniusE, et al. Cardiorespiratory development in extremely preterm infants: vulnerability to infection and persistence of events beyond term-equivalent age[J]. Acta Paediatr, 2008, 97(3):285-292. DOI: 10.1111/j.1651-2227.2007.00618.x.
[9]EichenwaldEC, ZupancicJA, MaoWY, et al. Variation in diagnosis of apnea in moderately preterm infants predicts length of stay[J]. Pediatrics, 2011, 127(1):e53-e58. DOI: 10.1542/peds.2010-0495.
[10]von Ungern-SternbergBS, BodaK, ChambersNA, et al. Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study[J]. Lancet, 2010, 376(9743):773-783. DOI: 10.1016/S0140-6736(10)61193-2.
[11]JacquelineR, MalviyaS, BurkeC, et al. An assessment of interrater reliability of the ASA physical status classification in pediatric surgical patients[J]. Paediatr Anaesth, 2006, 16(9):928-931. DOI: 10.1111/j.1460-9592.2006.01911.x.
[12]FerrariLR, LeahyI, StaffaSJ, et al. One size does not fit all: a perspective on the American Society of Anesthesiologists physical status classification for pediatric patients[J]. Anesth Analg, 2020, 130(6):1685-1692. DOI: 10.1213/ANE.0000000000004277.
[13]FerrariL, LeahyI, StaffaSJ, et al. The pediatric-specific American Society of Anesthesiologists physical status score: a multicenter study[J]. Anesth Analg, 2021, 132(3):807-817. DOI: 10.1213/ANE.0000000000005025.
[14]Valois-GómezT, OofuvongM, AuerG, et al. Incidence of difficult bag-mask ventilation in children: a prospective observational study[J]. Paediatr Anaesth, 2013, 23(10):920-926. DOI: 10.1111/pan.12144.
[15]Garcia-MarcinkiewiczAG, LeeLK, HaydarB, et al. Difficult or impossible facemask ventilation in children with difficult tracheal intubation: a retrospective analysis of the PeDI registry[J]. Br J Anaesth, 2023, 131(1):178-187. DOI: 10.1016/j.bja.2023.02.035.
[16]Venkat RamanV, de BeerD. Perioperative airway complications in infants and children with Crouzon and Pfeiffer syndromes: a single-center experience[J]. Paediatr Anaesth, 2021, 31(12):1316-1324. DOI: 10.1111/pan.14310.
[17]DismaN, AsaiT, CoolsE, et al. Airway management in neonates and infants: European Society of Anaesthesiology and Intensive Care and British Journal of Anaesthesia joint guidelines[J]. Eur J Anaesthesiol, 2024, 41(1):3-23. DOI: 10.1097/EJA.0000000000001928.
[18]郑镇伟, 马武华, 杜瑞明, 等. 超声测量不同气道指标预测患儿喉镜暴露困难的价值[J]. 临床麻醉学杂志, 2021, 37(4):385-390. DOI: 10.12089/jca.2021.04.012.
[19]KawaguchiY, SaitoT, MitsunagaT, et al. Prediction of respiratory collapse among pediatric patients with mediastinal tumors during induction of general anesthesia[J]. J Pediatr Surg, 2018, 53(7):1365-1368. DOI: 10.1016/j.jpedsurg.2017.09.013.
[20]PearsonJK, TanGM. Pediatric anterior mediastinal mass: a review article[J]. Semin Cardiothorac Vasc Anesth, 2015, 19(3):248-254. DOI: 10.1177/1089253215578931.
[21]LambertV, MatthewsA, MacDonellR, et al. Paediatric early warning systems for detecting and responding to clinical deterioration in children: a systematic review[J]. BMJ Open, 2017, 7(3):e014497. DOI: 10.1136/bmjopen-2016-014497.
[22]LiuW, XuR, JiaJ, et al. Research progress on risk factors of preoperative anxiety in children: a scoping review[J]. Int J Environ Res Public Health, 2022, 19(16):9828. DOI: 10.3390/ijerph19169828.
[23]仪修文, 贾继娥, 焦佳丽, 等. 五官科手术患儿麻醉诱导期焦虑的危险因素分析[J]. 中华医学杂志, 2022, 102(21):1596-1602. DOI: 10.3760/cma.j.cn112137-20220118-00135.
[24]KimJ, ChiesaN, RaaziM, et al. A systematic review of technology-based preoperative preparation interventions for child and parent anxiety[J]. Can J Anaesth, 2019, 66(8):966-986. DOI: 10.1007/s12630-019-01387-8.
[25]RegliA, BeckeK, von Ungern-SternbergBS. An update on the perioperative management of children with upper respiratory tract infections[J]. Curr Opin Anaesthesiol, 2017, 30(3):362-367. DOI: 10.1097/ACO.0000000000000460.
[26]GongT, HuangQ, ZhangQ, et al. Postoperative outcomes of pediatric patients with perioperative COVID-19 infection: a systematic review and meta-analysis of observational studies[J]. J Anesth, 2024, 38(1):125-135. DOI: 10.1007/s00540-023-03272-7.
[27]ShiojiN, SumieM, AoyamaK. How long elective surgery should be delayed from COVID-19 infection in pediatric patients?[J]. J Anesth, 2023. In press.
[28]DinakarC, ChippsBE. Clinical tools to assess asthma control in children[J]. Pediatrics, 2017, 139(1):e20163438[pii]. DOI: 10.1542/peds.2016-3438.
[29]ScalfaroP, SlyPD, SimsC, et al. Salbutamol prevents the increase of respiratory resistance caused by tracheal intubation during sevoflurane anesthesia in asthmatic children[J]. Anesth Analg, 2001, 93(4):898-902. DOI: 10.1097/00000539-200110000-00019.
[30]von Ungern-SternbergBS, HabreW, ErbTO, et al. Salbutamol premedication in children with a recent respiratory tract infection[J]. Paediatr Anaesth, 2009, 19(11):1064-1069. DOI: 10.1111/j.1460-9592.2009.03130.x.
[31]2023 GINA Report. Global strategy for asthma management and prevention [EB/OL]. (2023-07-10)[2024-05-18]. https://ginasthma.org/2023-gina-main-report/.
[32]OhnM, EastwoodP, von Ungern-SternbergBS. Preoperative identification of children at high risk of obstructive sleep apnea[J]. Paediatr Anaesth, 2020, 30(3):221-231. DOI: 10.1111/pan.13788.
[33]TaitAR, BickhamR, O′BrienLM, et al. The STBUR questionnaire for identifying children at risk for sleep-disordered breathing and postoperative opioid-related adverse events[J]. Paediatr Anaesth, 2016, 26(7):759-766. DOI: 10.1111/pan.12934.
[34]中国儿童OSA诊断与治疗指南制订工作组, 中华医学会耳鼻咽喉头颈外科学分会小儿学组, 中华医学会儿科学分会呼吸学组, 等. 中国儿童阻塞性睡眠呼吸暂停诊断与治疗指南(2020)[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(8):729-747. DOI: 10.3760/cma.j.cn115330-20200521-00431.
[35]EgbutaC, MasonKP. Recognizing risks and optimizing perioperative care to reduce respiratory complications in the pediatric patient[J]. J Clin Med, 2020, 9(6):1942. DOI: 10.3390/jcm9061942.
[36]LeeLK, BernardoM, GroganTR, et al. Perioperative respiratory adverse event risk assessment in children with upper respiratory tract infection: validation of the COLDS score[J]. Paediatr Anaesth, 2018, 28(11):1007-1014. DOI: 10.1111/pan.13491.
[37]KimHS, KimYS, LimBG, et al. Risk assessment of perioperative respiratory adverse events and validation of the COLDS score in children with upper respiratory tract infection[J]. Medicina (Kaunas), 2022, 58(10):1340. DOI: 10.3390/medicina58101340.
[38]JarrayaA, KammounM, AmmarS, et al. Predictors of perioperative respiratory adverse events among children with upper respiratory tract infection undergoing pediatric ambulatory ilioinguinal surgery: a prospective observational research[J]. World J Pediatr Surg, 2023, 6(2):e000524. DOI: 10.1136/wjps-2022-000524.
[39]TaoS, ZhangT, WangK, et al. Identification of the risk factors in perioperative respiratory adverse events in children under general anesthesia and the development of a predictive model[J]. Transl Pediatr, 2021, 10(7):1877-1882. DOI: 10.21037/tp-21-257.
[40]von Ungern-SternbergBS, SommerfieldD, SlevinL, et al. Effect of albuterol premedication vs placebo on the occurrence of respiratory adverse events in children undergoing tonsillectomies: the REACT randomized clinical trial[J]. JAMA Pediatr, 2019, 173(6):527-533. DOI: 10.1001/jamapediatrics.2019.0788.
[41]ZhangJ, YinJ, LiY, et al. Effect of dexmedetomidine on preventing perioperative respiratory adverse events in children: a systematic review and meta-analysis of randomized controlled trials[J]. Exp Ther Med, 2023, 25(6):286. DOI: 10.3892/etm.2023.11985.
[42]MiharaT, UchimotoK, MoritaS, et al. The efficacy of lidocaine to prevent laryngospasm in children: a systematic review and meta-analysis[J]. Anaesthesia, 2014, 69(12):1388-1396. DOI: 10.1111/anae.12788.
[43]Drake-BrockmanTF, RamgolamA, ZhangG, et al. The effect of endotracheal tubes versus laryngeal mask airways on perioperative respiratory adverse events in infants: a randomised controlled trial[J]. Lancet, 2017, 389(10070):701-708. DOI: 10.1016/S0140-6736(16)31719-6.
[44]de CarvalhoA, VitalRB, de LiraC, et al. Laryngeal mask airway versus other airway devices for anesthesia in children with an upper respiratory tract infection: a systematic review and meta-analysis of respiratory complications[J]. Anesth Analg, 2018, 127(4):941-950. DOI: 10.1213/ANE.0000000000003674.
[45]LiL, ZhangZ, YaoZ, et al. The impact of laryngeal mask versus other airways on perioperative respiratory adverse events in children: a systematic review and meta-analysis of randomized controlled trials[J]. Int J Surg, 2019, 64:40-48. DOI: 10.1016/j.ijsu.2019.02.020.
[46]SpencerAO, WalkerAM, YeungAK, et al. Ultrasound assessment of gastric volume in the fasted pediatric patient undergoing upper gastrointestinal endoscopy: development of a predictive model using endoscopically suctioned volumes[J]. Paediatr Anaesth, 2015, 25(3):301-308. DOI: 10.1111/pan.12581.
[47]KimEH, YoonHC, LeeJH, et al. Prediction of gastric fluid volume by ultrasonography in infants undergoing general anaesthesia[J]. Br J Anaesth, 2021, 127(2):275-280. DOI: 10.1016/j.bja.2021.03.039.
[48]HarrisJ, RameletAS, van DijkM, et al. Clinical recommendations for pain, sedation, withdrawal and delirium assessment in critically ill infants and children: an ESPNIC position statement for healthcare professionals[J]. 2016, 42(6):972-986.
[49]何珊, 王亚力, 左泽兰. 中文版康奈尔儿童谵妄量表的临床初步应用[J]. 中华儿科杂志, 2019, 57(5):344-349. DOI: 10.3760/cma.j.issn.0578-1310.2019.05.006.
[50]李洁, 杨鸥, 何苗, 等. 儿童日间手术苏醒期躁动的危险因素[J]. 中华麻醉学杂志, 2020, 40(11):1338-1340. DOI: 10.3760/cma.j.cn131073.20191201.01115.
[51]HinoM, MiharaT, MiyazakiS, et al. Development and validation of a risk scale for emergence agitation after general anesthesia in children: a prospective observational study[J]. Anesth Analg, 2017, 125(2):550-555. DOI: 10.1213/ANE.0000000000002126.
[52]PetreMA, SahaB, KasuyaS, et al. Risk prediction models for emergence delirium in paediatric general anaesthesia: a systematic review[J]. BMJ Open, 2021, 11(1):e043968. DOI: 10.1136/bmjopen-2020-043968.
[53]MaoD, FuL, ZhangW. Construction and validation of an early prediction model of delirium in children after congenital heart surgery[J]. Transl Pediatr, 2022, 11(6):954-964. DOI: 10.21037/tp-22-187.
[54]刘磊, 孙盈盈, 孙雅娟, 等. 全麻诱导期多模式非药物处理对学龄前儿童苏醒期谵妄的影响[J]. 中华麻醉学杂志, 2023, 43(9):1031-1036. DOI: 10.3760/cma.j.cn131073.20230523.00902.
[55]RaoY, ZengR, JiangX, et al. The effect of dexmedetomidine on emergence agitation or delirium in children after anesthesia-a systematic review and meta-analysis of clinical studies[J]. Front Pediatr, 2020, 8:329. DOI: 10.3389/fped.2020.00329.
[56]KimN, ParkJH, LeeJS, et al. Effects of intravenous fentanyl around the end of surgery on emergence agitation in children: systematic review and meta-analysis[J]. Paediatr Anaesth, 2017, 27(9):885-892. DOI: 10.1111/pan.13181.
[57]van HoffSL, O′NeillES, CohenLC, et al. Does a prophylactic dose of propofol reduce emergence agitation in children receiving anesthesia? A systematic review and meta-analysis[J]. Paediatr Anaesth, 2015, 25(7):668-676. DOI: 10.1111/pan.12669.
[58]NgKT, SarodeD, LaiYS, et al. The effect of ketamine on emergence agitation in children: a systematic review and meta-analysis[J]. 2019, 29(12):1163-1172.
[59]GanTJ, BelaniKG, BergeseS, et al. Fourth consensus guidelines for the management of postoperative nausea and vomiting[J]. Anesth Analg, 2020, 131(2):411-448. DOI: 10.1213/ANE.0000000000004833.
[60]LianC, XieZ, WangZ, et al. Pediatric preoperative risk factors to predict postoperative ICU admission and death from a multicenter retrospective study[J]. Paediatr Anaesth, 2016, 26(6):637-643. DOI: 10.1111/pan.12905.
[61]LianC, WangP, FuQ, et al. Modified paediatric preoperative risk prediction score to predict postoperative ICU admission in children: a retrospective cohort study[J]. BMJ Open, 2020, 10(3):e036008. DOI: 10.1136/bmjopen-2019-036008.
[62]XuX, NieS, ZhangA, et al. Acute kidney injury among hospitalized children in China[J]. Clin J Am Soc Nephrol, 2018, 13(12):1791-1800. DOI: 10.2215/CJN.00800118.
[63]HawkinsJ, MpodyC, CorridoreM, et al. Risk factors and consequences of acute kidney injury after noncardiac surgery in children[J]. Anesth Analg, 2022, 135(3):625-632. DOI: 10.1213/ANE.0000000000005901.
[64]Van den EyndeJ, DelpireB, JacquemynX, et al. Risk factors for acute kidney injury after pediatric cardiac surgery: a meta-analysis[J]. Pediatr Nephrol, 2022, 37(3):509-519. DOI: 10.1007/s00467-021-05297-0.
[65]LeowEH, ChanYH, NgYH, et al. Prevention of acute kidney injury in children undergoing cardiac surgery: a narrative review[J]. World J Pediatr Congenit Heart Surg, 2018, 9(1):79-90. DOI: 10.1177/2150135117743211.
[66]杨宇齐, 郄淑文, 达静静, 等. 先天性心脏病患儿术后并发急性肾损伤在院死亡的围手术期危险因素分析[J]. 中华肾脏病杂志, 2020, 36(4):306-309. DOI: 10.3760/cma.j.cn441217-20191025-00058.
[67]TangelVE, KrulSD, StolkerRJ, et al. Perioperative mortality in pediatric patients: a systematic review of risk assessment tools for use in the preoperative setting[J]. Anesthesiology, 2022, 137(5):555-567. DOI: 10.1097/ALN.0000000000004369.
[68]NasrVG, StaffaSJ, ZurakowskiD, et al. Pediatric risk stratification is improved by integrating both patient comorbidities and intrinsic surgical risk[J]. Anesthesiology, 2019, 130(6):971-980. DOI: 10.1097/ALN.0000000000002659.
[69]ValenciaE, StaffaSJ, FaraoniD, et al. Prospective external validation of the pediatric risk assessment score in predicting perioperative mortality in children undergoing noncardiac surgery[J]. Anesth Analg, 2019, 129(4):1014-1020. DOI: 10.1213/ANE.0000000000004197.
[70]NasrVG, DiNardoJA, FaraoniD. Development of a pediatric risk assessment score to predict perioperative mortality in children undergoing noncardiac surgery[J]. Anesth Analg, 2017, 124(5):1514-1519. DOI: 10.1213/ANE.0000000000001541.
[71]FaraoniD, VoD, NasrVG, et al. Development and validation of a risk stratification score for children with congenital heart disease undergoing noncardiac surgery[J]. Anesth Analg, 2016, 123(4):824-830. DOI: 10.1213/ANE.0000000000001500.
[72]黄葱葱, 杜垚强, 连春微, 等. 非心脏手术患儿围术期死亡的危险因素分析和预警系统建立[J]. 浙江医学, 2016, 38(22):1804-1807.
[73]王建设, 占文强, 费建, 等. 儿童早期2 h以内全身麻醉手术暴露对学龄期神经发育的影响[J]. 中华医学杂志, 2023, 103(5):356-363. DOI: 10.3760/cma.j.cn112137-20220524-01150.