以下措施可有效地限制局麻药摄取:
① 超声引导区域阻滞技术超声技术的引入,大大降低了周围神经阻滞LAST的发生率。与神经刺激引导相比,超声引导可减少周围神经阻滞时血管穿刺的发生率[18],减少了如中枢神经系统兴奋、轻微心脏并发症、惊厥发作、心搏骤停的发生以及脂肪乳剂的应用;与体表定位技术相比,超声引导可降低周围神经阻滞LAST风险达65%[19]。
② 血管内注射标志物的应用在目前的各种方案中,只有芬太尼和肾上腺素较为符合理想的血管内注射标志物标准,较为安全可靠。硬膜外麻醉时如果意外地将芬太尼100μg注入静脉,已被证明能使分娩患者产生困倦或镇静。10-15μg肾上腺素对检测成人血管内注射具有良好的预测价值和80%的敏感性,如误入血管,表现为心率增加≥10次/min,或收缩压增加≥15mmHg;在儿科患者中,0.5μg/kg肾上腺素误入血管则表现为收缩压升高≥15mmHg[18]。
③ 试验剂量和注药间隔即使采用经穿刺针头和导管回抽的技术,仍有至少2%患者不能识别血管穿刺及血管内注射局麻药[21]。因此,临床提出了区域阻滞麻醉试验剂量的概念:在麻醉开始时,先注射3-5ml(含肾上腺素)的试验剂量局麻药,并等待至少一个循环时间(15-30s),如果入血,肾上腺素将发挥心血管活性作用,表现为心率增快和血压升高,下肢注射的循环时间比上肢注射要长。但是目前没有临床客观数据和文献支持这种做法,只作为推荐意见一直在临床应用。反对意见认为由于注药间隔使注射局麻药的时间整体延长和暂停注射期间穿刺针前端移动的风险,会抵消试“注药间隔时间”概念的潜在益处。
[1] Neal JM, Bernards CM, Butterworth JF, et al. ASRA practice advisory on local anesthetic systemic toxicity[J]. Reg Anesth Pain Med, 2010, 35(2):152-61.
[2] Lee LA, Posner KL, Cheney FW, et al. Complications associated with eye blocks and peripheral nerve blocks: an american society of anesthesiologists closed claims analysis[J]. Reg Anesth Pain Med, 2008, 33(5):416-422.
[3] Liu SS, Ortolan S, Sandoval MV, et al. Cardiac arrest and seizures caused by local anesthetic systemic toxicity after peripheral nerve blocks: Should we still fear the reaper[J]? Reg Anesth Pain Med 2016;41(1):5-21.
[4] Mörwald EE, Zubizarreta N, Cozowicz C, et al. Incidence of Local Anesthetic Systemic Toxicity in Orthopedic Patients Receiving Peripheral Nerve Blocks[J]. Reg Anesth Pain Med, 2017, 42(4):442-
445.
[5] Rubin DS, Motsumoto M, Weinberg G, et al. Local anesthetic systemic toxicity in total joint arthroplasty: incidence and risk factors in the United States from the National Inpatient Sample 1998–2013[J]. Reg Anesth Pain Med, 2018, 43(2):131-137.
[6] Di GG, Neal JM, Rosenquist RW, et al. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979 to 2009[J]. Reg Anesth Pain Med, 2010, 35(2):181-187.
[7] Barrington MJ, Kluger R. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade[J]. Reg Anesth Pain Med, 2013, 38(4):289-99.
[8] Gitman M, Barrington MJ. Local anesthetic systemic toxicity: a review of recent case reports and registries[J]. Reg Anesth Pain Med, 2018, 43(2):124-130.
[9] Yu RN, Houck CS, Casta A, et al. Institutional policy changes to prevent cardiac toxicity associated with bupivacaine penile blockade in infants[J]. A A Case Rep, 2016, 7(3):71-75.
[10] Heinonen J, Litonius E, PitkanenM, et al. Incidence of severe local anaesthetic toxicity and adoption of lipid rescue in Finnish anaesthesia departments in 2011–2013[J]. Acta Anaesthesiol Scand, 2015, 59(8):1032-1037.
[11] Polaner DM, Taenzer AH, Walker BJ, et al. Pediatric Regional Anesthesia Network (PRAN): a multi-institutional study of the use and incidence of complications of pediatric regional anesthesia[J]. Anesth Analg, 2012, 115(6):1353-1364.
[12] Ecoffey C, Lacroix F, Giaufré E, et al. Epidemiology and morbidity of regional anesthesia in children: a follow-up one-year prospective survey of the French-Language Society of Paediatric Anaesthesiologists (ADARPEF)[J]. Paediatr Anaesth, 2010, 20(12):1061–1069.
[13] Gurnaney H, Kraemer FW, Maxwell L, et al. Ambulatory continuous peripheral nerve blocks in children and adolescents: a longitudinal 8-year single center study[J]. Anesth Analg, 2014, 118(3): 621–627.
[14] Butterworth JFt. Models and mechanisms of local anesthetic cardiac toxicity: a review[J]. Reg Anesth Pain Med, 2010, 35(2):167-176.
[15] Bruelle P, LeFrant JY, de La Coussaye JE, et al. Comparative electrophysiologic and hemodynamic effects of several amide local anesthetic drugs in anesthetized dogs[J]. Anesth Analg, 1996, 82(3):648-656.
[16] Lönnqvist PA, Ecoffey C, Bosenberg A, et al. The European society of regional anesthesia and pain therapy and the American society of regional anesthesia and pain medicine joint committee practice advisory on controversial topics in pediatric regional anesthesia I and II: what do they tell us[J]? Curr Opin Anaesthesiol, 2017, 30(5):613-620.
[17] Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept[J]. Reg Anesth Pain Med, 2004, 29(6):564-575; discussion 24.
[18] Abrahams MS, Aziz MF, Fu RF, et al. Ultrasound guidance compared with electrical neurostimulation for peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials[J]. Br J Anaesth, 2009, 102(3):408-417.
[19] Orebaugh SL, Kentor ML, Williams BA. Adverse outcomes associated with nerve stimulator-guided and ultrasound-guided peripheral nerve blocks by supervised trainees: update of a single-site database[J]. Reg Anesth Pain Med, 2012, 37(6):577-582.
[20] Auroy Y, Narchi P, Messiah A, et al. Serious complications related to regional anesthesia: results of a prospective survey in France[J]. Anesthesiology 1997; 87(3): 479-86.
[21] Pan PH, Bogard TD, Owen MD. Incidence and characteristics of failures in obstetric neuraxial analgesia and anesthesia: a retrospective analysis of 19,259 deliveries[J]. Int J Obstet Anesth, 2004, 13(4):227-233.
[22] Ilfeld BM, Viscusi ER, Hadzic A, et al. Safety and side effect profile of liposome bupivacaine (Exparel) in peripheral nerve blocks[J]. Reg Anesth Pain Med, 2015, 40(5):572-582.
[23] Chin KJ, McDonnell JG, Carvalho B, et al. Essentials of our current understanding: abdominal wall blocks[J]. Reg Anesth Pain Med, 2017, 42(2):133-183.
[24] Joseph MN, Michael JB, Michael RF, et al. The Third American Society of Regional Anesthesia and Pain Medicine Practice Advisory on Local Anesthetic Systemic Toxicity. Executive Summary 2017[J]. Reg Anesth Pain Med, 2018,43(2):113-123.
[25] Fettiplace MR, Weinberg G. The mechanisms underlying lipid resuscitation therapy[J]. Reg Anesth Pain Med, 2018, 43(2):138-149.
[26] Weinberg GL, Ripper R, Murphy P, et al. Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart[J]. Reg Anesth Pain Med, 2006, 31(4): 296-303.
[27] Weinberg GL. Treatment of local anesthetic systemic toxicity (LAST)[J]. Reg Anesth Pain Med, 2010, 35(2):188-193.
[28] Wang QG, Wu C, Xia Y, et al. Epinephrine Deteriorates Pulmonary Gas Exchange in a Rat Model of Bupivacaine-Induced Cardiotoxicity: A Threshold Dose of Epinephrine[J]. Reg Anesth Pain Med, 2017, 42(3):342-350.
[29] Di Gregorio G, Schwartz D, Ripper R, et al. Lipid emulsion is superior to vasopressin in a rodent model of resuscitation from toxin-induced cardiac arrest[J]. Crit Care Med, 2009, 37(3):993-999.
[30] Soltesz EG, van Pelt F, Byrne JG. Emergent cardiopulmonary bypass for bupivacaine cardiotoxicity[J]. J Cardiothorac Vasc Anesth, 2003, 17(3):357-358.